Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper is about learning the parameter-to-solution map for systems of partial differential equations (PDEs) that depend on a potentially large number of parameters covering all PDE types for which a stable variational formulation (SVF) can be found. A central constituent is the notion of variationally correct residual loss function, meaning that its value is always uniformly proportional to the squared solution error in the norm determined by the SVF, hence facilitating rigorous a posteriori accuracy control. It is based on a single variational problem, associated with the family of parameter-dependent fibre problems, employing the notion of direct integrals of Hilbert spaces. Since in its original form the loss function is given as a dual test norm of the residual; a central objective is to develop equivalent computable expressions. The first critical role is played by hybrid hypothesis classes, whose elements are piecewise polynomial in (low-dimensional) spatio-temporal variables with parameter-dependent coefficients that can be represented, for example, by neural networks. Second, working with first-order SVFs we distinguish two scenarios: (i) the test space can be chosen as an $$L_{2}$$-space (such as for elliptic or parabolic problems) so that residuals can be evaluated directly as elements of $$L_{2}$$; (ii) when trial and test spaces for the fibre problems depend on the parameters (as for transport equations) we use ultra-weak formulations. In combination with discontinuous Petrov–Galerkin concepts the hybrid format is then instrumental to arrive at variationally correct computable residual loss functions. Our findings are illustrated by numerical experiments representing (i) and (ii), namely elliptic boundary value problems with piecewise constant diffusion coefficients and pure transport equations with parameter-dependent convection fields.more » « less
-
Abstract Approximating functions of a large number of variables poses particular challenges often subsumed under the term “Curse of Dimensionality” (CoD). Unless the approximated function exhibits a very high level of smoothness the CoD can be avoided only by exploiting some typically hiddenstructural sparsity. In this paper we propose a general framework for new model classes of functions in high dimensions. They are based on suitable notions ofcompositional dimension-sparsityquantifying, on a continuous level, approximability by compositions with certain structural properties. In particular, this describes scenarios where deep neural networks can avoid the CoD. The relevance of these concepts is demonstrated forsolution manifoldsof parametric transport equations. For such PDEs parameter-to-solution maps do not enjoy the type of high order regularity that helps to avoid the CoD by more conventional methods in other model scenarios. Compositional sparsity is shown to serve as the key mechanism for proving that sparsity of problem data is inherited in a quantifiable way by the solution manifold. In particular, one obtains convergence rates for deep neural network realizations showing that the CoD is indeed avoided.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract The criticality problem in nuclear engineering asks for the principal eigenpair of a Boltzmann operator describing neutron transport in a reactor core. Being able to reliably design, and control such reactors requires assessing these quantities within quantifiable accuracy tolerances. In this paper, we propose a paradigm that deviates from the common practice of approximately solving the corresponding spectral problem with a fixed, presumably sufficiently fine discretization. Instead, the present approach is based on first contriving iterative schemes, formulated in function space, that are shown to converge at a quantitative rate without assuming any a priori excess regularity properties, and that exploit only properties of the optical parameters in the underlying radiative transfer model. We develop the analytical and numerical tools for approximately realizing each iteration step within judiciously chosen accuracy tolerances, verified by a posteriori estimates, so as to still warrant quantifiable convergence to the exact eigenpair. This is carried out in full first for a Newton scheme. Since this is only locally convergent we analyze in addition the convergence of a power iteration in function space to produce sufficiently accurate initial guesses. Here we have to deal with intrinsic difficulties posed by compact but unsymmetric operators preventing standard arguments used in the finite dimensional case. Our main point is that we can avoid any condition on an initial guess to be already in a small neighborhood of the exact solution. We close with a discussion of remaining intrinsic obstructions to a certifiable numerical implementation, mainly related to not knowing the gap between the principal eigenvalue and the next smaller one in modulus.more » « lessFree, publicly-accessible full text available January 21, 2026
-
We consider a parametric elliptic PDE with a scalar piecewise constant diffusion coefficient taking arbitrary positive values on fixed subdomains. This problem is not uniformly elliptic, as the contrast can be arbitrarily high, contrary to the Uniform Ellipticity Assumption (UEA) that is commonly made on parametric elliptic PDEs.We construct reduced model spaces that approximate uniformly well all solutions with estimates in relative error that are independent of the contrast level. These estimates are sub-exponential in the reduced model dimension, yet exhibiting the curse of dimensionality as the number of subdomains grows. Similar estimates are obtained for the Galerkin projection, as well as for the state estimation and parameter estimation inverse problems. A key ingredient in our construction and analysis is the study of the convergence towards limit solutions of stiff problems when diffusion tends to infinity in certain domains.more » « less
-
This paper is concerned with the design and analysis of least squares solvers for ill-posed PDEs that are conditionally stable. The norms and the regularization term used in the least squares functional are determined by the ingredients of the conditional stability assumption. We are then able to establish a general error bound that, in view of the conditional stability assumption, is qualitatively the best possible, without assuming consistent data. The price for these advantages is to handle dual norms which reduces to verifying suitable inf-sup stability. This, in turn, is done by constructing appropriate Fortin projectors for all sample scenarios. The theoretical findings are illustrated by numerical experiments.more » « less
An official website of the United States government
